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ABSTRACT

Orbital, spin and astrometric parameters of the millisecond pulsar

PSR J0621+1002have been determined through six years of timing observa-

tions at three radio telescopes.The chief result is a measurementof the rate

of periastron advance,& - 07.0116 + 0?.0008 yr -1. Interpreted as a general rela-

tivistic effect, this implies the sum of the pulsar mass, ml, and the companion

mass, me, to be M = ml + m2 = 2.81 -4- 0.30M®. The Keplerian parame-

ters rule out certain combinations of ml and ms, as does the non-detection of

Shapiro delay in the pulse arrival times. These constraints, together with the as-

sumption that the companion is a white dwarf, lead to the maximum likelihood

values rnl = 1.w_0.30_°+°'3°Mo and rn2 = v..lv-0.12_a_+o.32 Mo (68% confidence). The other

major finding is that the pulsar experiences dramatic variability in its disper-

sion measure (DM), with gradients as steep as 0.013 pc cm -3 yr -1. A structure

function analysis of the DM variations uncovers spatial fluctuations in the in-

terstellar electron density that cannot be fit to a single power law, unlike the

Kolmogorov turbulent spectrum that has been seen in the direction of other pul-

sars. Other results from the timing analysis include the first measurements of

the pulsar's proper motion, # = 3.5 :t: 0.3masyr -1, and of its spin-down rate,

dP/dt = 4.7 × 10 -2°, which, when corrected for kinematic biases and combined

with the pulse period, P = 28.8 ms, gives a characteristic age of 1.1 x 10 l° yr and

a surface magnetic field strength of 1.2 × 109 G.

Subject headings: stars: neutron--binaries: general--pulsars: individual

(PSR J0621+1002)--relativity--ISM: structure
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1. Introduction

Recent pulsar searches have uncovered a new class of binary pulsars. Most

millisecond pulsars are in nearly circular binary orbits with low-mass He white

dwarfs, comprising the class of so-called low-mass binary pulsars (LMBPs). The new

category of systems, the intermediate-mass binary pulsars (IMBPs), have companion

stars with masses above 0.45M e. Since helium flash occurs at a core mass of

0.45Mo, the stars must be CO or ONeMg white dwarfs. About eight IMBPs are

currently known. Observationally, they are distinguished by high mass functions,

fl > 0.015 Me; by moderately spun-up pulse periods, 10 ms < P < 200 ms; and by orbital

eccentricities that are small, e < 10 -2, but somewhat higher than those of the LMBPs

(Camilo et al. 1996; Camilo et al. 2001; Edwards &: Bailes 2001).

This paper reports on timing measurements of PSR J0621+1002, an IMBP with a 28.8-

ms spin period in an 8.3-day orbit. The main goal of our observations was to determine the

pulsar and companion masses through measurement of post-Newtonian orbital parameters,

particularly the rate of apsidal motion. Measuring apsidal motion is challenging in white

dwarf-pulsar binaries because their often extremely small eccentricities--values of 10 -s

are typical--make it difficult to determine the angle of periastron, and hence to measure

periastron advance. A comparatively high eccentricity--still only e = 0.0025--made the

detection of apsidal motion feasible for PSR J0621+1002.

Mass measurements in white dwarf-pulsar systems can be used to constrain theories

of binary evolution. The LMBPs and the IMBPs share roughly similar histories. They

both originate when a giant star transfers mass onto a neutron star companion, resulting

in a spun-up millisecond pulsar and a white dwarf. The histories of LMBPs and IMBPs

differ, however, in the details of mass exchange. For LMBPs, it is a stable process that

occurs when the giant swells past its Roche lobe (Phinney & Kulkarni 1994). For IMBPs,



-4-

it is thought to be an unstable transfer that operates via common envelope evolution

(van den Heuvel 1994) or super-Eddington accretion (Taam, King, & Ritter 2000). Other

pulsar binaries, such as double neutron star systems, evolve in still other ways. One way

to test binary evolution scenarios is by comparing the masses of neutron stars in different

classes of binary systems to infer differences in amounts of mass transferred. (For a review

of pulsar mass measurements, see Thorsett & Chakrabarty 1999.)

The first year of timing observations of PSR J0621+1002 was discussed in Camilo

et al. (1996), which reported the pulsar's Keplerian orbital elements, position, and spin

period. With five additional years of timing data, we have measured the apsidal motion,

spin-down rate, and proper motion of the pulsar, and we have derived significant constraints

on Shapiro delay. We also have found sharp variations in the dispersion measure (DM),

which we use to analyze turbulence in the interstellar medium (ISM) in the direction of

PSR J0621+1002.

2. Observations

Radio telescopes at Arecibo, Green Bank, and Jodrell Bank recorded pulse times of

arrival (TOAs) from PSR J0621+1002 on 529 separate days between 1995 March 18 and

2001 July 1. Table 1 summarizes the observations. The data comprise (1) three nine-day

campaigns at Arecibo in 1999 May, 2000 May, and 2001 June, each covering a full pulsar

orbit at two radio frequencies; (2) a handful of additional Arecibo measurements taken

monthly between 1997 and 2001; (3) irregularly spaced observations at Jodrell Bank on 387

days between 1995 and 2001, with an average of five days between epochs; (4) twenty Green

Bank sessions spaced roughly two months apart, each performed over four consecutive days

at two frequencies; and (5) four campaigns covering the full orbit at Green Bank, two each

in 1995 and 1998.
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At the 305-m Arecibo telescope,the Princeton Mark IV data acquisition system

(Stairs et al. 2000) collected three or four 29-minute data sets each day at 430 and

1410 MHz. Local oscillators in phase quadrature mixed a 5-MHz passband (10-MHz at

1410 MHz) to baseband in both senses of circular polarization. The four resulting signals

were low-pass filtered, sampled, quantized with 4-bit resolution (2-bit at 1410 MHz) and

stored on disk or tape. Upon playback, software coherently dedispersed the voltages

and folded them synchronously at the pulse period over 190-second integrations, yielding

1024-bin pulse profiles with four Stokes parameters.

The 140-Foot (43-m) telescope at Green Bank observed the pulsar for 30 to 60 minutes

a day at 370, 575 or 800MHz. The "Spectral Processor", a digital Fourier transform

spectrometer, divided the signals into 512 spectral channels across a 40-MHz passband in

each of two polarizations. The spectra were folded synchronously at the pulse period over

an integration time of 300 seconds, producing pulse profiles with 128 phase bins each.

The 76-m Lovell telescope at Jodrell Bank carried out a typical observation of 30

minutes at 410, 606 or 1400MHz. The signal was dedispersed on-line in each of two

polarizations using filterbank spectrometers with bandwidths of 64 x 0.125 MHz for the 400

and 600 MHz data and 32 x 1, 32 x 3, and 64 x 1 MHz for the 1400 MHz data. The detected

signals were folded synchronously to make a pulse profile.

In all cases, conventional techniques were used to measure pulse arrival times. Spectral

data were dedispersed and summed to produce a single total-intensity profile for a given

integration. Each profile was cross-correlated with a standard template to measure the

phase offset of the pulse within the profile. Different templates were used for each receiver

at each telescope, and for each spectrometer at Jodrell Bank. The offset was added to the

start time and translated to the middle of the integration to yield a TOA. In a further step,

sets of TOAs from Arecibo and Green Bank were averaged over intervals of 29 minutes
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(sometimeslonger for GreenBank) to makea singleeffectiveTOA for the interval. Each

observatory'sclock wascorrectedretroactively to the UTC timescale,using data from the

Global Positioning System(GPS) satellites.

3. Timing Model

The TOAs were fit to a model of the pulsar's orbital, astrometric and spin-down

behavior using least-squaresmethods. The TEMPO 1 software package performed the fit,

employing the JPL DE200 solar system ephemeris and the TT(BIPM01) terrestrial time

standard of the Bureau International des Poids et Mesures. Orbital kinematics were

incorporated by means of the theory-independent model of Damour & Deruelle (1986).

Five Keplerian parameters (orbital period, semi-major axis projected into the line of sight,

eccentricity, angle of periastron, and time of periastron passage) and one post-Keplerian

parameter (rate of periastron advance) were necessary to describe the orbit. Also included

in the timing model were spin period and its time derivative, position and proper motion

(right ascension and declination and their time derivatives) and a time-varying DM (see

§3.2). Besides these astrophysical quantities, the fit also allowed for arbitrary time offsets

between the TOA sets to account for possible alignment discrepancies between standard

templates as well as for differing signal delays through the various observing hardware.

Table 2 lists the best-fit timing parameters.

Included in the table are upper limits on parameters that were not detected. These

limits were found by allowing the extra parameters to vary one at a time in the fit. In

addition to the items in the table, we carried out an extensive search for Shapiro delay; see

§4.4.

lhttp://pulsar.princeton.edu/tempo
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3.1. TOA Uncertainties

Preliminary uncertainties of the TOAs were calculated in the profile cross-correlations

and, for TOAs made by averaging over many short observations, from the scatter in the

measurements made from the individual short observations. The X 2 of the best fit using

these uncertainties was high, X2/V = 3.4, where v = 740 is the number of degrees of freedom.

Most likely this is because the TOA uncertainties had been systematically underestimated,

a common problem of unknown origin in high-precision pulsar timing. To compensate, we

added a fixed amount of error in quadrature to the statistical uncertainties of TOAs in each

data set. The amounts were chosen so that X2/v __ 1 for each data set in the final fit.

3.2. Dispersion Measure Variations

Due to dispersion within the ISM, a radio pulse is delayed in reaching Earth by a

number of seconds equal to DM/(2.41 x 10 -4 re), where f is the observing frequency in

MHz and the dispersion measure, DM, is the column density of free electrons integrated

along the line of sight in units of pccm -3,

DM = n_(z)dz, (1)

in which L is the distance to the pulsar. For many pulsars, the DM can accurately be

characterized as a single number that holds steady over years of observation. This is not

true for PSR J0621+1002. Figure la shows the residual pulse arrival times after removing a

model with a fixed DM. Temporal variations in the DM are visible as secular trends in the

residuals. As expected for an effect that scales as 1/f 2, the lowest frequencies in the figure

have the largest residuals. We find the pulse profile to be stable across the duration of the

observations, so that no part of the trends in Figure la results from intrinsic changes in the

pulsar emission pattern.
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We incorporated DM variations into the timing model using an 18-term polynomial

spanningthe entire data set,

17

DM(t) = DM0 + _-'_ DMi(t- to) i, (2)
i=1

where to is the epoch of the parameter fit and the constant term DM0 is the value quoted

for DM in Table 2. The polynomial coefficients were simultaneously fit with all other

parameters in the global timing solution. The DM0 term was derived, in effect, from the

575 and 800 MHz data sets from Green Bank, which were collected with the same data

acquisition system and timed using the same standard template. The remaining terms

depended on all the data sets.

Figure lb shows residual arrival times after subtracting the polynomial DM. These

residuals are consistent with Gaussian noise except perhaps for an upward rise in the Jodrell

Bank points in early 2001, a period over which all TOAs belong to a single frequency

(1400 MHz), so that the DM at those epochs is poorly constrained. These same TOAs have

some of the largest uncertainties in the data set, however, and so the unmodeled trend in

them has a negligible effect on the overall timing parameters.

3.3. Pulsar Astrometry and Spin-down Behavior

Using the Taylor & Cordes (1993) model of the interstellar free-electron distribution,

we estimate the pulsar distance to be d = 1.9kpc. A newer model (J. M. Cordes 2002,

private communication) puts the pulsar at a distance of d = 1.35kpc. The spread of

distance estimates, combined with the total proper motion, # = 3.5mas yr -1, gives a

relative Sun-pulsar transverse velocity in the range V =/zd = 23-32 km/s. The pulsar is

at a small distance from the Galactic plane, z = Idsinbl < 0.07kpc, where b = -T0 is the

pulsar's Galactic latitude.
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Camilo et al. (2001)havenoted that IMBPs tend to havea Galactic scaleheightsmaller

than that of the LMBPs by a factor of 2-4, and that this could be due to their possessinga

spacevelocity V smaller than that of the LMBPs by a factor _< 2. The low space velocity

of PSR J0621+1002 supports this notion. With this number there are now 4 IMBPs with

measured proper motions, for which the space velocities are all approximately 40+ 10 kms -1

(Toscano et al. 1999; Kramer et al. 1999). These velocities compare to V ._ 100kms -1 for

a larger population of millisecond pulsars composed largely of LMBPs and isolated pulsars

(Nice & Taylor 1995; Cordes &: Chernoff 1997; Lyne et al. 1998; Toscano et al. 1999). A

partial explanation for this discrepancy resides in the different evolutionary histories of the

two binary classes: LMBP progenitors are 1 + 1.3 M o binaries, while IMBPs may evolve

from 4 + 1.3 M o systems. For identical center-of-mass impulses following the supernova

explosion, the pulsars in the latter systems will acquire smaller space velocities.

The observed time derivative of the pulsar's spin period, /5obs, is biased away from

its intrinsic value, /_int, as a result of Doppler accelerations. Following Damour & Taylor

(1991), we find slight biases due to differential rotation in the plane of the Galaxy and due

to proper motion. A potential third source of bias, from acceleration perpendicular to the

plane of the Galaxy, is negligible because of the small distance from PSR J0621+1002 to

the plane. With the bias subtracted off, we estimate/_int = (4.3-4.4) x 10 -_°, about 10%

smaller than/_obs.

Under conventional assumptions about the pulsar spin-down mechanism, the period

and intrinsic period derivative yield a characteristic age of v = 1.1 X 10 l° yr and a surface

magnetic field strength of B0 = 1.2 x 109 G.
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4. Pulsar and Companion Masses

Our goal is to determine the pulsar mass,ml, and the companion mass, m2. The

allowed values of the masses are constrained by the Keplerian orbital elements, the nature

of the companion star, the apsidal motion of the binary system, and the lack of detectable

Shapiro delay. In this section, we discuss each of these factors in turn and display the

resulting constraints on the masses in Figure 2a. The related restrictions on m2 and orbital

inclination angle i are shown in Figure 2b.

4.1. Keplerian Orbit

The masses and the inclination angle are related through the Keplerian mass function,

(m2 sin i) 3 =x3(2_r)_(___._)fl(ml,m2, i) _ (ml W m2) 2

=0.02702684110.000000004M o,

where i is the a priori unknown orbital inclination angle; Pb is the orbital period;

(3)

x - (al sin i)/c is the projected semi-major axis of the pulsar measured in light seconds,

with al the semi-major axis and c the speed of light; and To -- GMo/c 3 = 4.925 x 10 -6 s,

with G Newton's gravitational constant. Since sin i < 1, this can be rewritten to give an

upper limit on ml in terms of m2,

(4)
3/2 t-1/2

ml __ ,1_2 Jl -- m2"

This constraint is shown as the lower shaded region in Figure 2a.

4.2. Upper Limit on Companion Mass

The companion to the pulsar must be either a main sequence star, a neutron star, a

black hole, or a white dwarf. The first possibility can be ruled out, as optical observations
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using the Hubble SpaceTelescopefind no evidencethat the secondaryis a main sequence

star (Camilo et al., to be published elsewhere). The secondpossibility can also be

eliminated, since it is improbable that a double neutron star binary could have survived

two supernovaexplosionsand yet retained the small eccentricity of the PSR J0621+1002

system (PortegiesZwart & Yungelson1998). A pulsar-black hole binary is also unlikely to

havesucha circular orbit (Lipunov et al. 1994). The companion must therefore be a white

dwarf, and as such, its mass, m2, must be lower than the Chandrasekhar limit, 1.4 MQ.

This constraint is illustrated in Figure 2 as the upper shaded regions.

4.3. Relativistic Periastron Advance

The measured rate of periastron advance, &, provides another relation between ml

and m2. For the PSR J0621+1002 system, we assume that nonrelativistic contributions to

apsidal motion are negligibly small (see §4.6). The general relativistic interpretation of d;

then yields the combined mass of the stars,

Pb 5/s (l_eS)& 1
M _ ml + ms = _ 3

= 2.81 -t- o.ao Mo. (5)

This constrains ml and m2 to lie within the strips indicated by dashed lines in Figure 2a.

4.4. Shapiro Delay

According to general relativity, a pulse is delayed as it propagates through the

gravitational potential well of the secondary. For a pulsar in a circular orbit, this so-called

Shapiro delay is

Ats = -2 ms To ln[1 - sin i sin(¢ - ¢0)], (6)
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where ¢ is the orbital phasein radians and ¢0 is the phaseof the ascendingnode. For

small inclination angles, the variation of Ats overan orbit is nearly sinusoidal,and so it is

indistinguishablefrom a minor increasein the projectedorbital size, x. For edge-on orbits,

with i _ 90 °, the variation becomes strongly peaked at ¢ - ¢0 _ _/2, when the pulsar is

behind the companion. This breaks the covariance with the Keplerian parameters, allowing

measurement of Shapiro delay, and hence of m2 and i.

Shapiro delay is not detected in the PSR J0621+1002 timing data. However, the

magnitude of the effect is expected to be around 15 #s, which would make Shapiro delay

easily detectable if the inclination angle were large. The fact that the delay is not observed

therefore implies that the orbit is tilted substantially away from an edge-on orientation.

To explore the statistical limits that both the detection of periastron advance and the

non-detection of Shapiro delay place on i and m2 (and hence on ml), we analyzed the

timing data over a grid of values in the ranges 0 <_ cos i < 1 and 0 < m2 _< 2.0 Mo. For each

combination of ms and cosi, we calculated the Shapiro delay parameters and the rate of

periastron advance according to general relativity. We then performed a timing fit holding

those quantities fixed while allowing all other parameters to vary. We recorded the resulting

value of X 2 and its difference from the global minimum on the grid. Small departures in X _

from the minimum signified the most likely configurations of m_ and cos i.

The solid contours in Figure 2a show the regions in which acceptable timing solutions

were found. The interpretation of the contours is straightforward: within the area allowed

by the precession measurement, the non-detection of Shapiro delay excludes solutions with

"edge-on" orbits, and so the strip is truncated at low values of cos i. Figure 2b shows that

the inclination angle is constrained with a high degree of confidence to be less than 50 °.

Following the statistically rigorous procedure described in Appendix A, we converted

the )i2 differences to probabilities and derived probability distribution functions (PDFs)
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for ml and m2. The analysis is restricted to timing solutions for which m2 _< 1.4 MQ, in

accordance with the discussion in §4.2. The PDFs of the pulsar and companion masses

appear in Figure 3. They yield the maximum likelihood estimates

1 ao+O.30 Mo (68% confidence)/Ttl _--- "_'_'_'-0.30 (7)

for the pulsar and

a o_+O.32 Mo (68% confidence) (8)_7_ 2 _ v.,.,,_,_0.12

for the companion. Note that the sum of the maximum likelihood estimates, 2.67 Mo, is less

than the total system mass derived in equation 5 from periastron advance alone, 2.81 M o.

This is primarily a consequence of the upper limit on the companion mass, m2 <_ 1.4 Mo,

which preferentially excludes solutions with high total mass, as can be seen in Figure 2a.

4.5. Interpretation of the Masses

A growing body of evidence finds that neutron stars in white dwarf-pulsar systems

are not much more massive than those in double neutron star binaries, even though the

secondaries must lose several tenths of a solar mass as they evolve toward white dwarfs. In

particular, Thorsett & Chakrabarty (1999) find that the masses of neutron stars orbiting

either white dwarfs or other neutron stars are consistent with a remarkably narrow Gaussian

distribution, m = 1.35 + 0.04 M o. While our measurement of the mass of PSR J0621+1002

is in statistical agreement with that result, the maximum likelihood value is suggestively

high, allowing the possibility that a substantial amount of mass was transferred onto the

neutron star.

Our estimate of the companion mass implies that the star is probably an ONeMg

white dwarf and ranks it among the heaviest known white dwarfs in orbit around a pulsar.

As van Kerkwijk & Kulkarni (1999) have pointed out, there are few massive white dwarfs,
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m2 > 1 Mo, known to have evolved from a single massive progenitor star. They argue that

the companion to PSR B2303+46, a young pulsar in an eccentric orbit, is such a white

dwarf. Our timing of PSR J0621+1002 shows that its companion is similarly likely to

have descended from a massive star, even though the histories of mass loss and accretion

in the eccentric PSR B2303+46 binary, with no spin-up of the pulsar, and the circular

PSR J0621+1002 binary, with significant spin-up, must have been very different.

Given the mass estimates, it seems likely that the PSR J0621+1002 system formed

through a common envelope and spiral-in phase (Taam, King, & Ritter 2000; Tauris, van

den Heuvel, & Savonije 2000). In this scenario, the companion originally had a mass of

5 - 7 Mo, and the pulsar, initially in a wide orbit with a binary period of a few hundred days,

spiraled in to its current orbit of Pb = 8.3 under a drag force arising from its motion through

the envelope. The same formation mechanism has been put forward for PSR J1454-5846,

an object quite similar to PSR J0621+1002, with a 12.4-day orbital period, a 45.2-ms spin

period, an eccentricity of 0.002, and a companion mass of ,,_ 1.1 M o (Camilo et al. 2001).

4.6. Classical Periastron Advance

The above analysis assumed that the observed apsidal motion can be entirely attributed

to relativity. In principle, however, apsidal motion could also be caused by distortions of

the secondary star. Smart & Blandford (1976) considered this possibility in the context

of a potential white dwarf companion to the Hulse-Taylor binary pulsar, PSR B1913+16.

Their analysis can also be applied to PSR J0621+1002. They found tidal deformation of

the companion to contribute negligibly to d_ for PSR B1913+16. Since the apsidal advance

per binary period due to tidal deformation scales as a -_, where a is the major axis, this

effect can also be neglected in the wider PSR J0621+1002 system.
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A potentially more important effectis rotational deformation, which becomessignificant

if the secondaryis spinning rapidly. The precessionrate due to rotation is

Odrot" : nQ (1 - g3sin 2 0 -I- cot i sin 0 cos 0 cos (I)0) (9)

(Wex 1998), in which n = 2n/Pb and

3k2R_a2 (10)
Q = a2arn2(1 - e2)2 '

where k2, R2, 122, and m2 are the structure constant, radius, angular velocity, and mass

of the secondary; 0 is the angle between the angular momentum vector of the secondary

and the angular momentum vector of the orbit; and _0 is the longitude of the ascending

node in a reference frame defined by the total angular momentum vector (see Fig. 9 of Wex

1998). Neither 0 nor _0 is known, so we must allow for all possible values in the ranges

0 < 0 < 7r and 0 < 4P0 < 27r. Substituting PSR J0621+1002's Keplerian orbital parameters,

the formula can be written in the notation of Smarr & Blandford (1976):

Wrot=O°.OOO163yr-1 ( M@ ) 2/3
• 3

m-l-_m2 Ol 6 (1- _sin20+cotisinOcosOcosr_o), (11)

where a = 2k2R_f_/(3Gm2) and a6 = a/(106km2). To gauge the largest value that

_rot could attain, we will use limits on the masses and the orbital inclination angle from

the relativistic analysis, recognizing that they would need to be modified should &rot be

found significant. Our observations constrain 20 ° < i < 50 °, so that 1.2 < cot i < 2.7

(see Figure 2b), for which the maximum value of the geometric factor in equation 11 is

1.7, attained at 0 = 40 ° and _0 = 0. Analyzing models of rotating white dwarfs, Smarr

& Blandford (1976) found that as _< 15. Combining these restrictions with our measured

value of total system mass, the precession due to rotation for PSR J0621+1002 can be as

high as &rot _< 0°0021 Yr -1, about 20% of our observed value.

There is reason to believe that the classical contribution to the observed & is smaller

than this. In most cases, a rotational deformation will induce a change in the projected
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semi-major axis of the orbit, x -- al sin i/c. Wex (1998) shows the rate of change to be

from which

- = nQ cot i sin 0 cos 0 sin (I)0, (12)
X

• =- -Jc (1-_sin20+c°tisinOc°sOc°s(b°) . (13)wrot x cot i sin 0 cos 0 sin (I)0

Thus, our observed upper limit of ]Sc/x] < 1.2 × 10 -15 implies that dJrot is no more than

1.2 × 10-15rads -1 = 77.1 x 10-6yr -1 times a geometric factor• Unfortunately, certain

special combinations of i, 0, and (I)0 will make the geometric factor large. For this reason,

we cannot definitively exclude the possibility that rotational precession contributes to the

observed value of &. For most cases, however, the geometric factor will be of order unity,

and so the upper limit on dJ_ot will be substantially smaller than our observed value of

&. Because of this, and because there is no reason to expect the secondary to be rapidly

rotating, we have chosen to ignore &rot in our analysis of the pulsar and companion masses.

5. Density Irregularities in the ISM

5.1. Temporal DM Variations

Figure 4a shows the DM of PSR J0621+1002 calculated on individual days on which

data were collected at Arecibo at both 430 and 1410 MHz. A DM drift as steep as 0.013

pccm-3yr -1 can be seen in the plot. If not properly modeled, such a gradient would

shift the TOAs by up to 7#s at 430 MHz over the 8-day pulsar orbit, a systematic effect

significantly larger than the measurement uncertainties of the Arecibo TOAs. The DM

gradient is among the largest ever detected in a pulsar outside a nebula (Backer et al. 1993).

Variations in the DM can be used to investigate inhomogeneities in the interstellar

electron density. For this purpose, we modeled the DM as a series of step functions in
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time, as shownin Figure 4b. The width of the stepintervals, 100 days,was a compromise

betweenthe goal of sampling DM as frequently as possibleand the needfor eachsegment

to span enoughmulti-frequency data for the DM to be reliably calculated.

In Figure 4b, there appear to be discontinuities in the DM at 1997.4and 1999.0.With

a careful checkof the data around these dates, we confirmed that the DM did indeed

changeby the amounts shown within the 100-daytime resolution of the figure, and that

the increaseand decreaseare not artifacts of binning the DM or of joining together data

from different receiversand telescopes.However,the data do not allow us to distinguish

betweennearly instantaneousjumps in DM, as seenin the Crab pulsar signal (Backer,

Wong, & Valanju 2000), and slower changeson a scaleof 100days. Given the rapid but

apparently smoothvariations in DM seenafter 2000,wesuspectthe DM to be strongly but

continuously varying at the earlier epochsaswell.

5.2. Structure Function Analysis

The DM variations in Figure 4 result from the passage across the line of sight of density

irregularities in the ionized ISM. The spatial structure of the irregularities can be discerned

using the two-point structure function of the DM,

DDM(T) -- ([DM(t + r)- DM(t)]2), (14)

where r is the time lag between DM measurements and where the angular brackets denote

ensemble averaging (e.g., Cordes et al. 1990). In a simple one-dimensional model where

the line of sight cuts at the relative Sun-pulsar transverse velocity V across a pattern of

ISM irregularities that are "frozen in" a thin screen, and where the thin screen is midway

between the Sun and the pulsar, the time lag is related to the spatial size l of the density

inhomogeneities through l = VT/2.
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The structure function DDM(7-) can be approximated from the DM values at times t/

through the unbiased estimator

N(,-)
1

_][DM(ti + r) - DM(ti)] 2 - O'2M, (15)boM( )- ,=1

where N(T) is the number of DM pairs that enter into the summation at a given lag T and

where O'DM is the mean uncertainty of the DM values. Figure 5 illustrates values of/)DM(T)

calculated this way for PSR J0621+1002. The error bars were computed by assuming

Gaussian statistics for the fitted DM values and formally propagating their covariances

through equation 15. We restrict 7 to values for which N(7) > 10, thereby extending the

lag from a minimum of 100 days to a maximum of 1300 days, about half the length of our

full data span.

5.3. Not a Simple Power Law

The structure function in Figure 5 presents a puzzle because it is not the simple power

law that is predicted by standard theories of the ISM and that is seen in the direction

of other pulsars. In the standard picture, a power law arises from the expectation that

turbulence spreads energy from longer to shorter length scales. Accordingly, the spectrum of

perturbations in the electron density is modeled in terms of the spatial frequency, q --- 27r/1,

via

P(q) (x q-Z (16)

(Rickett 1990). The relation is hypothesized to hold over some range of wave numbers,

qi < q < qo; below some "inner scale" qi = 2rc/li and above some "outer scale" qo = 2r/lo,

various damping mechanisms are expected to cut off the turbulent energy flow. With the

assumed linear relation between l and % the structure function becomes

= , (17)
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where T0 is a normalization constant. The index _ is usually predicted to be near the

Kolmogorov value for turbulence in neutral gases, 11/3. Studies of DM variations in other

pulsars have uncovered power laws with indices close to that value (Phillips & Wolszczan

1992; Kaspi, Taylor, & Ryba 1994; Cognard & Lestrade 1997).

The phase structure function in Figure 5 is obviously not a simple power law. It is not

clear how to interpret this. A power law, marked by the dashed line, can be fit to the first

five points in the plot. The slope of the line yields a spectral index, _ = 3.28 + 0.09, that

is reasonably close to the Kolmogorov value. At lags longer than 500 days, the power law

fails to hold, although there is a hint of its reemergence at the longest lags. The flattening

out of the structure function at 500 days is a direct consequence of the two sharp breaks

in the DM time series (see Fig. 4b). If we take the Sun-pulsar transverse velocity to be

V = 27kms -1, then 500 days corresponds to a length of I = V_-/2 = 5.5 x 1013 cm, implying

structure in the electron density power spectrum at this scale.

6. Conclusion

We have found substantial constraints on the masses of PSR J0621+1002 and its

1 _a+0.a0 Mo. The lower end oforbital companion. The pulsar mass is found to be ml = ,.uo_0.a0

this uncertainty range is near the canonical pulsar mass of 1.35 Mo, but the mass may also

be several tenths of a solar mass higher, allowing the possibility that a substantial amount

of material accreted onto the neutron star during the evolution of the system. The mass of

N ClR+0-32 MO, makes it one of the heaviest known white dwarfs orbitingthe secondary, m2 = ..... 0._

a pulsar.

Can the mass measurements be improved by continued timing observations?

Unfortunately, post-Keplerian effects beyond those considered in this paper, such as orbital
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period decay, and gravitational redshift and time dilation, will not be detectable in the

timing data for PSR J0621+1002 in the foreseeable future, so any improvement must come

about through improved measurements of _b and Shapiro delay.

The uncertainty in the measurement of the total mass, M = 2.81 + 0.30 Mo, scales

linearly with the uncertainty of &, which in turn is inversely proportional to the time

span over which data are collected. This has a simple explanation: the longer the time

span of the observations, the more _ shifts, and so the easier it is to measure _b. The

highest precision data used in this work--the annual Arecibo campaigns--were collected

over two years. A similar campaign carried out several years in the future would shrink the

uncertainty in M by a factor of a few.

The pulsar and companion masses were further constrained by Shapiro delay. The

precision of the Shapiro delay measurement (or limit) has no dependence on data span

length, so its uncertainty is reduced only as n -1/2, where n is the number of observations.

At best, a modest improvement could be made with existing radio telescope resources.
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A. Statistical Analysis of Pulsar and Companion Masses

The PDFs of the pulsar mass,ml, and the companion mass, mr, shown in §4.4 were

calculated by least-squares fitting the TOAs to a timing model across a grid of mr and cos i

values and analyzing the resulting changes in )i2. A formal derivation of the PDFs proceeds

as follows. If X02is the global minimum on the grid, then each value of

Ax2(m2, cos/)= x2(m2, cos/)- )/o2 (A1)

has a )i2 distribution with two degrees of freedom. It therefore maps to a Bayesian likelihood

function,

where {tj} stands for the data set. Accordingly, the joint posterior probability density of

m2 and cos i is

p(m2,cosil {ty}) = P({tj}lm2'c°si)
p({tj}) p(m2, cos i). (A3)

The Bayesian "evidence", p({tj}), is determined by normalizing the integral of

p(rn2, cos i [{tj}) over alI grid points that are consistent with rnl > 0, given the reIationship

among ml, rn2 and cos i in the mass function in equation 3. As in all Bayesian investigations,

a choice must be made for the prior, p(m2, cosi). We selected the product of a uniform

distribution on 0 < mr <_ mr, max and a uniform distribution on 0 < cosi < 1. For the

companion mass, the choice embodies our ignorance about the star; all that is known for

certain is that it is a white dwarf, for which reason we set m2,max = 1.4 Mo (see §4.2). For

the inclination angle, a flat distribution in cos i follows from the assumption that the orbital

angular momentum vector has no preferred direction in space.

The PDF of mr is obtained by marginalizing equation A3 with respect to cos i:

f0
p(m21{tj}) = d(cosi)p(m2,cosil{tj} ). (A4)
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Similarly, the PDF of ml can be expressed as a double integral,

rn2, max J_O 1p(rrt 1 ]{tj}) : drrt2 d(cosi)p(ml Ira2, cosi)p(m2, cosil{tj}),
J0

where ml is guaranteed to be consistent with the mass function by setting

p(mllm2, cos/) = _ m_ - f_/2 - m2 ,

with 5 the Dirac function.

(A5)

(AS)
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Table 1: Summary of Observations.

Observatory Dates Frequency Bandwidth Number of Typical Integration RMS residual a

(Mnz) (MHz) TOAs Time (min) (/_s)

Arecibo

Green Bank

Jodrell Bank

1997.9-2001.5 430 5 103 29 2.6

1999.4-2001.5 1410 10 24 29 3.2

1995.2-1999.0 370 40 48 50 17

1995.2-1999.5 575 40 49 40 13

1995.2-1999.5 800 40 39 40 19

1996.2-1997.7 410 40 12 30 21

1995.7-1999.8 606 40 298 30 12

1995.7-1997.8 1410 32 78 30 24

1997.8-1999.3 1380 96 79 30 16

1999.7-2001.2 1396 64 50 30 19

aValues for Arecibo and Green Bank include the effect of averaging TOAs calculated from shorter integration times.
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Table 2: Pulse Timing Parameters of PSR J0621+1002 a

Measured Parameters

Right ascension, (_ (32000) ........................ 06h21m2_l1108(3)

Declination, _ (J2000) ............................. +10°02_38_J741(2)

Proper motion in R.A., #_ = &cos6 (mas yr-1)... 3.5(3)

Proper motion in Dec., _6 = _ (mas yr -1) ........ -0.3(9)

Pulse period, P (ms) .............................. 28.853860730049(1)

Period derivative, Pobs (10-2°) ................... 4.732(2)

Epoch (MJD [TDB]) .............................. 50944.0

Orbital period, Job (days) .......................... 8.3186813(4)

Projected semi-major axis, x (It-s) ................ 12.0320744(4)

Eccentricity, e .................................... 0.00245744(5)

Epoch of periastronbTo (MJD [TDB]) ............. 50944.75683(4)

Longitude of periastron,bw (deg) .................. 188.816(2)

Periastron rate of change, d_ (deg yr -1) ........... 0.0116(8)

Dispersion measure c DM (pc cm -3) ............... 36.6010(6)

Measured Upper Limits

Parallax (mas) .................................... < 2.7

Pulse period second derivative, l6 (s -l) .......... < 4 x 10 -3°

Orbital period rate of change, /5b ................. < 5 x 10 -12

Orbital axis rate of change, _ ..................... < 1.5 x 10 -14

Derived Parameters

Mass function, fl (ME)) ........................... 0.027026841(4)

Total mass, M (ME)) .............................. 2.81 -t- 0.30

Pulsar mass, ra 1 (ME)) 1 ,_0+o.3o................................ -0.30

Companion mass, rn2 (Mo) ....................... 0 o_+°32"_--0.12

Characteristic age (yr) ............................ 1.1 × 10 l°

Surface magnetic field strength (Gauss) ........... 1.2 × 109

Total proper motion, # (mas yr -1) ................ 3.5(3)

aValues in parentheses are la uncertainties (68% confidence) in the last digit quoted.

bw and To are highly covariant. Observers should use w = 1887815781 and To = 50944.756830176.

CThe DM varies. The value here is the constant term in an 18-term polynomial expansion (see §3.2).
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E1

E1NOTE TO EDITOR: Please place Figures 2a and 2b side by side instead of on top of

one another.
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Fig. 1.-- Residual pulse arrival times for fits with (a) the DM held constant and (b) the DM

modeled as an 18-term polynomial. Note the difference in the vertical scales of the two plots

and, in particular, the scale of the bottom Arecibo panel, emphasizing the high precision of

the TOAs from that observatory.
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Fig. 2.-- Values of pulsar mass, ml, companion mass, rn2, and orbital inclination angle,

cos/, permitted by the Keplerian orbital elements, the relativistic timing model and the

assumption that the companion is a white dwarf. (a) Allowed values of ml and rn2. Dotted

lines show selected values of constant i. (b) Allowed values of cos i and rn2. In both plots,

the true values of the parameters must lie within the AX2 contours and outside the gray
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Fig. 3.-- Probability distribution functions of (a) the pulsar mass and (b) the companion
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error bars around those values. They represent the shortest widths along the mass axes that

both enclose tile peaks and contain 68°70 of the area under the curves. For the companion

mass, the sharp falloff in the histogram reflects the assumption that m2 _< 1.40 M o.
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